Double Total Domination on Generalized Petersen Graphs

نویسندگان

  • Chengye Zhao
  • Linlin Wei
چکیده

A set S of vertices in a graph G is a double total dominating set, abbreviated DTDS, of G if every vertex of G is adjacent to least two vertices in S. The minimum cardinality of a DTDS of G is the double total domination number of G. In this paper, we study the DTDS of the generalized Petersen graphs. Mathematics Subject Classification: 05C35

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Total Domination number of Generalized Petersen Graphs

Generalized Petersen graphs are an important class of commonly used interconnection networks and have been studied . The total domination number of generalized Petersen graphs P(m,2) is obtained in this paper.

متن کامل

Total double Roman domination in graphs

Let $G$ be a simple graph with vertex set $V$. A double Roman dominating function (DRDF) on $G$ is a function $f:Vrightarrow{0,1,2,3}$ satisfying that if $f(v)=0$, then the vertex $v$ must be adjacent to at least two vertices assigned $2$ or one vertex assigned $3$ under $f$, whereas if $f(v)=1$, then the vertex $v$ must be adjacent to at least one vertex assigned $2$ or $3$. The weight of a DR...

متن کامل

ON THE SIGNED TOTAL DOMINATION NUMBER OF GENERALIZED PETERSEN GRAPHS P (n, 2)

Let G = (V, E) be a graph. A function f : V → {−1,+1} defined on the vertices of G is a signed total dominating function if the sum of its function values over any open neighborhood is at least one. The signed total domination number of G, γ t (G), is the minimum weight of a signed total dominating function of G. In this paper, we study the signed total domination number of generalized Petersen...

متن کامل

The exact domination number of the generalized Petersen graphs

Let G = (V, E) be a graph. A subset S ⊆ V is a dominating set of G, if every vertex u ∈ V − S is dominated by some vertex v ∈ S. The domination number, denoted by γ(G), is the minimum cardinality of a dominating set. For the generalized Petersen graph G(n), Behzad et al. [A. Behzad, M. Behzad, C.E. Praeger, On the domination number of the generalized Petersen graphs, Discrete Mathematics 308 (2...

متن کامل

Roman domination number of Generalized Petersen Graphs P(n, 2)

A Roman domination function on a graph G = (V,E) is a function f : V (G) → {0, 1, 2} satisfying the condition that every vertex u with f(u) = 0 is adjacent to at least one vertex v with f(v) = 2. The weight of a Roman domination function f is the value f(V (G)) = ∑ u∈V (G) f(u). The minimum weight of a Roman dominating function on a graph G is called the Roman domination number of G, denoted by...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017